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The feasibility of defining a homogeneous, and in ~rticu~r, an isotropic t&w- 
lence, using only the hypotheses of similarity of spectral, correlation, or structu- 
ral functions is considered. Hypotheses of similarity (“self-preservation”) of COP- 

relation functions were used in [l] and in many subsequent works in conjunction 

with other assumptions, Sedov @I, using only these hypotheses for analyzing the 
problem of decay of homogeneous and isotropic turbulent motions of a viscous 
incompressible fluid, had shown possible alternatives: either the energy of tur- 
bulent velocity pulsations decrease in inverse proportion to time and the linear 
scale increases in proportion to the square root of time, when the determination 
of dime~ionless correlation fictions requires additional assum~ions ; or the 

complete solution can be derived (and was derived by Sedov). without having to 
resort to supplementary assumptions. It isshown here that this solution is in good 
agreement with experimental data on the decay of turbulent motions of air and 

water downstreamof a grid. With the use of the hypothesis of self-preservation 

of spectral tensors Sedov’s solution is extended to homogeneous nonisotropic tur- 
buience, and with the use of hypotheses of self-preservation of structural func- 

tions isotropic turbulence. In both cases alternatives similar to those of Sedov 
were obtained. 

1. Let us consider the averaged homogeneo~ turbulent motion of a viscous incom- 
pressible fluid of constant density on the assumption that the pulsating motion is defined 
by the system of Navier-Stokes equations. The principal object of this investigation is 
the two-point tensor of velocity correlation 

bi, j (rn, t) = (Ui (5,~ t)) Uj (5, + rn, Q> 

where Ui (r,, t) are velocity components at the point defined by Cartesian coordinates 

s,; i, j, m and n are subscripts which assume the values 1, 2, 3; angle brackets de- 
note an averaging operation, and (ui (z,, t)) = 0. 

For the tensor. bi, i fkom the system of Navier-Stokes equations we can derive (see, 
e. g. [3]) the following equation: 

8). . __.L2v__&-_si,j 
dt m m 

(1.11 

The tensor Si, j (r,, t) in Eq. (1.1) is defined in terms of third moments of velocity 
and moments containing pressure. Tensor bi, j (T,, t) must in addition satisfy the fol- 
lowing system of equations (see, e. g., [3]) : 
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(1.2) 

and the obvious inequality 

(I B i a,z,u,(x$)) 12) = i i apfi.,zkZjbk,j (r-F’@) > 0 0.3) 
k=lP=l k.j=lP, s=1 

(p,s = 1,2,... ,I; n,/i==1,2,3) 

in which aP and z k are arbitrary complex numbers ; the vinculum denotes the operation 

of complex conjugation; r, (pV ‘) is the difference between the coordinates x:' - x:' 

of arbitrary l points of space, and Z is an arbitrary number of positive integers. 
We introduce the tensor of the three-dimensional energy spectrum and the spectral 

tensor related to tensor Sk, j (rn, t) by 

bb, j (r,,, t) = S fl Eh, j (kn, t) ei (km’rm’dkldksdks (1.4) 
--Jo 

Sk,i(r,,, t) = 1 fl F,,j (k,,, t) ickm3 ‘m) dkldkpdk, 
-zc 

From Eq. (1.1) we now obtain 

& Ei,j + 2yk2Ei, j = Fi, j (~’ = ~m”m) 

and from the system of relationships (1.2) and (1.3) 

Ei,jk, = 0 

Ei, j (- k,) = Ei, j (k,) = Ej, i (k,) 

(1.5) 

(1.6) 

(1.7) 

and the inequality 

Eij (k,, t) ZiZj > 0 (1.8) 

which is valid for any complex numbers z~, .z2 and z3. 
The last inequality follows from Bochner’s theorem [4] about the representation of a 

positive definite function (function ZkYjbk,j (r,)) is such a function in virtue of rela- 
tionships (1.2) and (1.3)) in the form of a Fourier-Stiltjes integral. 

It follows from the same theorem that tensor bi, j (z,, t) can be always presented in 
the form of a Fourier-Stiltjes integral. Interoduction of the spectrum by equality (1.4) 
is based on the assumption that this Fourier-Stiltjes integral can be represented in the 
form of a Fourier integral. To introduce tensor Fi, i (k,, t) by equality (1.5) and to 
derive Eq. (1.6) and the system of equations (1.7) it is sufficient to assume the absolute 
convergence of integrals m 

Ei, ik,dkldkzdks, “’ E;, jk,k,dkldkadka 
sas 

..?a 

I\\ + Ei, jdkldkzdks 

--a 

The general form of tensor Ei, j (k,, t), which satisfies the system of relationships 

(1.7) and (1.8) [S] is 
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Et,t = E& + E’ (8,, - k,k, I k2) 0.9) 

where E’ (k,, t) is an arbitrary nonnegative function and Et (k,, t) is an arbitrary 

complex vector function which satisfies the equation Elki = 0. 
The problem is thus reduced to solving Eq. (1.6) for tensor Et,j (k,, .t) which may 

be specified in the form (1.9). Since Eq, (1.6) contains tensor Fg, I (k,, t), hence this 
equation is open, and its closure requires additional hypotheses. 

2. Let us assume that there exist functions 1 (t} and & (5) whose dimensions are, 

respectively, length and the square of velocity, and dimensionless tensors $gt and fij, 

which depend on dimensionless arguments rln = k,l, such that for q’ < k,,l ( q” 
and t > t’ the equalities 

Ei,j (k,, 0 = bla$ij (qnn) (2.1) 

Ff,, (k,, t) = ,!G pfij ha) 
are satisfied. 

If the hypotheses of spectral tensor similarity (2.1) are satisfied for all k, (q’ = 
-oo,q”= -t m), then similar equalities are valid for correlation tensors. In the isotro- 

pic case these equalities are equivalent to the K~rn~n-Howa~h hypotheses on the self- 
conservation of correlation functions. Substituting expressions (2.1) into Eq. (1.6) and 
passing from variables k,z, t to qn, t, we obtain the unique differential equation 

which links tensors $1 j (Q), fii (qnjr and functions b (t) and 2 (1) . 
Let us analyze this equation. 

Dividing Eq. (2.2) by ,?sb’j* and differentiating with respect to t, we obtain 

(2.2) 

(2.3) 

Functions Qi# and $il are obviously linearly independent (subscripts I and j are 
fixed). Hence two possible cases must be considered in relation with Eq. (2.3): 

1) Tensors 
(2.41 

admit one and only one linear relationship with constant coefficients 

where aI2 + az2 + as? -+ 0. 
2) Relationship (2.5) between tensors (2.4) can only be satisfied if a, = as = 

a, = 0. 

In this case from Eq. (2.3) follows that 

from which we obtain the laws of decay of b (t) and 1 (t) 

I = c’ (t + t,)‘~~, b = c” (t + to)-’ (2.6) 
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For $ij and fij we now have from (2.2) a single equation with constant coefficients, 
The determination of these tensors necessitates supplementary assumptions. 

Let us revert to case (1). 

We pass from Cartesian coordinates 7 1, q2, TJs to spherical coordinates q, 0, 93 
defined by 

,ill = q cos 8, rz = qsin 8 cos rp, 93 = q sin 8 sin cp 
We now have 

%I * $Q(%, rtZ, %3) = I1 + %j flit @T 9) 

For as = 0 from (2.5) we have 
‘tl?ij = cij (0, 9) *j-s+%% 

and for as -i- 2~2, + 0 from Eq. (2.3) we obtain for b (t) and 1 (t) the same decay 
laws (2.6) as in case (2). 

Henceforth we assume that ua + 0. 

Let us set as = 2. From (2.5) and (2.3) we have 

c lb-k% 
dt _I 

from which we obtain 

(2.7) 

where p and p are constants of inte~at~on, Substituting (2.7) into (2.2) and allowing 
for (2. 4)1 we obtain 

fij = (3p + 9) 4ij + Pl @ij i ‘rl C&8) 

Eliminating time from the system of equations (2.7) and integrating the derived equa- 

tion, for a, =#= 2a,, q =+ - 2p,and a$ $ n,q =#= 0 we obtain 

(2.9) 

Y = 2 (pa2 -t- 44 / (a2 - 2al) 

where C is a constant of integration. Using (2.9) we can integrate the first equation 
of system (2.7) by the method of quadrature 

z 
l 

t+ t” 
2 s “pig 

v (UL - 2n1) V (as - 2al) 1 
-‘@ (zp+q) dz (2.10) 

” (z = @Pi&“.“) 

Formulas (2.9) and (2.10) provide the solution for the functions b (t) and 1 (t). 
For as = 2 from (2.4) and (2.8) we have 

$))ij = cij(Q, ‘p) @wtq-3+w’a* (2.11) 

(2.12) 

Coefficients Cij (0, ‘0) = Ci,j (qlll / q),serve as initial conditions and must satisfy a 
system of algebraic equations similar to system (1.7) (1.8) and derived from the latter. 
Using the general form of the spectral tensor (1, S), we solve the system of equations for 
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(2.13) 

where 11, (q n 1 ‘tJ) is an arbitrary nonnegative function and qi (7 n / TV) is an arbitrary 
complex vector function which satisfies equation $jqj = 0. Arguments ski / q, ?~a / q 

and Q / TJ of these functions are linked by the relationship (qm / n) (qna / q) = 1, 
Let us restate our conclusions taking the laws of decay of b (t) and 2 (‘) as the basis. 

Thus, if the hy~theses (2.1) about the self-~~e~ation of spectral tensors are satisfied 
by the decay of homogeneous turbulent motions of a viscous incompressible fluid, then 
either laws (2.6) are satisfied for b and 2 and the determination of the dimensionless 

spectral tensors $~ii and fij requires additional assumptions, or, if laws (2.6) are not sa- 

tisfied, b (t) and I (t) are determined by formulas (2.9) and (2.10) and the spectral 

tensors $ij and fij by formulas (2.13) and (2.12). 

If for reasonably great t the hypotheses (2.1) are satisfied throughout space k,, , we 
can pass from spectral to correlation tensors. From Eq. (2.8) we can derive 

From this with ailowance for the equality Sj, j (0, t) = 0 (see [3]) follows that Q r= 0. 

For p = 0 system (2.7) coincides with the system of equations for b (t) and 1 (t) 
which was obtained and solved for isotropic turbulence @]. As shown by Sedov, in this 
case ai > 0 and a2 > 0 , and a, = 0.5 can be assumed. Following Sedov we intro- 
duce the notation aa = 10 a. For a #= 0.1 the solution of system (2.7) can be written 
as 

b 

(2.14) 

m’ = (1-10 a) I20 a. 

3. Let US now assume that the turbulence is isotropic. In this case the components 
Of tensor bi, j (r,, t) can be expressed in terms of a single scalar function b,Id (r, t) 

lY.1, of tensor 04 (z,, t> uj (xnr 4 uk (z, + r,, t)> in terms of a single scalar func- 
tion bilnn(r, t), and the components of tensor (P (z,, t) u1 (z, + r-,, t)) vanish, 
In these expressions r = 1/ G. Functions b,” (r, t) and billn fr,. t) are related by 
the unique equation 

a”b,,d 
V 7-:--;i- 

(the Karman-Howarth equation) which corresponds to the tensor equation (1.1). 

Let us assume that self-preservation of structural functions is observed with turbulence 

decay, i. e. there exist such functions I and b dependent on t and having the dimen- 
sions of length and of the square of velocity and such dimensionless functions pa and @a 
dependent on the dimensionless argument r / 1, that for r / I < XI the following rela- 
tionships are satisfied : 

bl” (r, r) = b, (1) - b (t) p2 (I’ / 1) 
(3.2) 
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Function b,(t) is determined by the equality b, (r) = b3d (0, t). III the particular case 
of b (t) / b, (t) = const hypotheses (3.2) convert to hypotheses of self-preservation 
of correlation functions. 

Hypotheses (3.2) were first considered by Lin [6] without, however, finding all possible 
solutions. 

Let us substitute expressions (3.2) into Eq. (3.1). Passing from variables r, t to x = 
1* f I, t, we obtain 

We divide all terms of Eq, (3.3) by 1-l bJlp and differentiate with respect to time t. 
This yields equation 

(01 (0*%(X)) = 0 (3.4) 

which may be considered as showing that the scalar product of four-dimensional vectors 

is equal zero. These vectors whivh vary with variation of their arguments must, obvi- 

ously, remain in fixed orthogonal planes (subspaces) of the four-dimensional space. 

The following cases are possible. 
1) o, (x) is an arbitrary vector. Then or (t) = 0, hence 

Inte~at~on of this system of equations yields 

2” = 4~ + (C + t,), b = & (t + to)-*, bl = -$ b + b,* (3.6) 

With allowance for (3.5) from Eq. (3.3) we obtain for functions fls (x) and ps (x) 
a single equation with constant coefficients. To determine these functions we need 
additional assumptions. 

This particular case was considered by Lin. Note that 4 + br* when t --f 00. 
This means that for b,* + 0 the laws of turbulence decay (3.6) cannot be satistied 
for considerable t, while if b,* = 0, then b (t) I b, (t) = const and, consequently, 
hypotheses (3.2) convert to the K~rn~n-Howa~h hypotheses about self-preservation of 
correlation functions. 

2) o2 (x) is a vector belonging to an arbitrary fixed three-dimensional plane, 
then 0~~ (t) belongs to the one-dimensional straight line normal to that plane. This 
means that - 

a3 + a282 + %d32’ + a0 (Bz” + 4Ba’ I x) = 0 (3.7) 

and all functions of time in Eq. (3.4) are proportional to 

ft canbe shown that a, # 0. 
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let us assume that a0 = 0. Since 

82 (x) I,, = XPa’ (X) I&a = 0 

it follows from (3.7) that as = 0. Comparing (3.4) and (3.8), we obtain 

and, consequently, 
- lb-‘/’ $ = 2b-% -$ 

Then from (3.4) we obtain 2~s + ~8s’ = 0, hence fiz _ x-2. But this solution does 

not satisfy condition ps (x) [Xc0 = 0. Hence a0 # 0. 
let us set a, = 2. Then from (3. 8) we obtain 

Substituting equalities (3.9) into Eq. (3.3) and allowing for (3.7). we obtain 

(3.9) 

Since for small X 8s - x3 (see PI), hence Eq. (3.10) implies that s = 0. Thus in the 
second case Eqs. (3.7) and (3.10) for functions ps (X) and fi3 (X) and the system of 

equations (3.9) for b, (t), b (t) and 2 (t) with coefficients a, = 2 and s = 0 
completely determine the law of turbulence decay. 

3) Vectors o1 (t) and o, (x) belong to two fixed and mutually perpendicular 
two-dimensional planes. This implies that function pa (x) must satisfy two linearly 

independent equations of the form (3.7). It can be shown that the solution of these 
equations has no physical meaning. Cases in which vector os (x) belongs to a fixed 
straight line or is identically zero are, also, impossible. 

let us revert to the case (2). 
Equation (3.7) for function us / us - p2 (x) assumes the same form as the equation 

for the correlation function f (x) derived in [Z]. For a, # 0 the unique solution of 
that equation, which for # = 0 is a3 / a2 , is a degenerate hypergeometric function 
p]. hence 

Ps=~jl-&[+ +; -%I) 

It can be readily shown (see, e. g. p] ) that 

(3.11) 

(- 1y+1 g pn (r, t) jr=0 = + <(3)“> >o 
From this and the expansion into Taylor series of ,F1 (3.11) follows [7] that or > 0, 
a2 > 0 and a3 > 0. 
Let us select the scales for b (t) and 1 (t) so as to have a, = 0.5 and U, = as. 

We introduce the notation us = 10 a. Integration of Eq. (3.10) yields 
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(3.12) 

Taking into account that a, = 0.5, a2 = a3 = 10 a, and s = 0 , we find that 
the solution of the system of Eqs. (3. 9) for b, (t) and functions z (t) and u (t) related 

to b (t) and 1 (t) by 
u = l-lb+, z E ldr,$-Qiu (3.13) 

for a#O.l, q+-2p and q # -20ap is of the form 

(3.14) 

This solution has a meaning not for every arbitrary value of parameters CI, p, q and 

C. First, since u and 2 are positive, C and (2~ + g) / (IOcc - 1) cannot be simultan- 
eously negative and, second, for certain values of parameters solutions are determinate 
only for the limited time t + t* < 0. 

In all remaining cases the asymptotic laws of decay b, b,, and I for t -_) 00 are: 

1) for C > 0 and a > 0.1 

1 - 1’ 2, b - b, + /I,* -l-lna 

2) for p > ) q / 2 1 and C (10~~ - 1) < 0 

[ _ pm-“), [] _ @(2P-“), (,, + b,* _ t-1 

3) for q < -2Oc(p, q < --2p and CI < 0.1 

1 - t’ ‘, b - b, + bl* - t-1 

Taking as basis the laws of decay b (t), b, (t) and I (t) c we restate our conclusions 

as follows: if the hypotheses (3.2) about the self-conservation of structural functions I& 
and p, for r / 1 < x’ are satisfied in the case of decay of homogeneous and isotropic 

turbulent motions of a viscous incompressible fluid, then either b, b,,and I vary in 
accordance with formulas (3.6) and functions pz (x) and p3 (x) are related by a single 

equation so that supplementary assumptions are required for their determination, or the 
laws of decay b (t), t,+ (t), and 2 (t) are determined by the system of Eqs. (3.13) and 
(3.14), and the form of structural functions [& (x) and P3 (x) is that defined by equa- 
lities (3.11) and (3.12). 

4. On the assumption that b (t) = 0, (t) the hypotheses (3.2) become the hypothe- 
ses of self-preservation of correlation functions f and h, i. e. of the existence of func- 

tion l (t) such that [l] 
f (r, t) = f (X1, h @, t) = IL (X) (4.1) 

(x = r / I, b (t) =z b,/’ (0, t)) 

(b,” (r, t) = bf (r, t), bcFn (r, 1) =: b’-h (r, t)) 

Sedov had analyzed and completely solved the problem of isotropic turbulence decay 
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on the basis of these hypotheses [2]. 
The results obtained in Sect.3 on the assumption that b (t) = b, (t) fhencesiztt 

first case C1 = Ca = c, and bl* = 0, and in the second --a, = aa7 Q = 

and br* =O), as well as the results obtained in Sect. 2 on the assumption of isotropic 

turbulence and the hypotheses (2.1) are satisfied throughout space k, (hence in the se- 
cond case p = 0 and in formula (2.13) $i = @ and I$ = eon&) are identical with 

the results of Sedov’s investigations, 

Taking as basis the laws of variation b (t) and I (t) we can formulate these results 

as follows : if the hypotheses (4.1) about the self-preservation of correlation functions 
f and Iz are satisfied in the case of homogeneous and isotropic turbulent motions of a 
viscous incompressible fluid, then either b (t) and I (t) (case 1) vary in accordance 

with formulas 
I” ‘T= J&v $ (t -+ t,), f) = & (t -t- &Y (4.2) 

and functions f (x) and h (x) are related by a single equation and their determination 

necessitates additional assumptions, or (case 2) the solution for f (x) and h (x) is given 
by formulas 

f=,F,[iOa; +; -~I (a > 0) (4.3) 

and the solution for b (t) and I! (t) is determined by the system of equations (2.14). 

Using the assumption that b -+ 0 when t -+ co and substituting for the scale l (t) 
the Taylor microscale h (t) 

we can express this solution in the following dimensionless form: 
the first set CL = a,, 0 < w < MS 
for p (10~ - 1) > 0, c > 0 

the second set a = a_, 0 < w < 1 

for C (10~ - 1) > 0, P < 0 

(4.6) 

(4.7) 

for a = 0.1, p < 0 
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v’ 
.- 

a* -=- 
h 

+nw 
*PO 

1’ ff + t*I 

x+ == f 
w-2 In-” wdw 

(4.8) 

w 

In formulas (4.6) - (4.8) the following notation is used : 

where t* and b* are constants of integration whose dimensions are, respectiveiy, time 
and the square of velocity, Upper limits of integration 2u0 of integrals in (4.7) and (4.8) 

have been chosen for definiteness so that dh I dw = dh I dt = 0 for v (t + t*) / 
J,*2 = 1 . For convenience the notation a = a+ and a = a_ is used for the first 
and second set, respectively, 

The solution obtained for the second case, i. e. the complete solution for isotropic 
turbulence decay, derived by Sedov with the use of only the hypotheses of self-conser- 
vation of correlation functions, will be called the Sedov solution. This solution contains 

four independent parameters a, p, C and t* (in formulas (4.3). (4.4) and (2.14)), or 
cz (a,or a_) b*, h* and t* (in formulas (4,3)- (4.9)), however,since the sets of func- 

which determine the Sedov solution depend only on parameter a (cc, or a_), the latter 
is the sole significant parameter. 

Functions of these sets are shown in Figs. 1 - 4 in the form of curves for 0.05 < 
a < 0.2. The dash lines in Figs. 3 and 4 relate to the asymptotic power laws for 

The values of functions f (F i k) and h (,- / h) corresponding to formulas (4.3) - (4.5) 
were calculated on a computer, using recurrent formulas and tabulated values of IFI Ia; 

0.5; r] [7] for a = 0.05, 0.06, . . ., 0.25. 
Sets 

+_[ W--t’] I,$[ ““,;;” 1 

were catculated by formulas (4.5) - (4.9). 
The integral in (4.8) reduces to an integral logarithm, and the integrals in (4.6) and 

(4.7) for rational a are expressed in terms of elementary functions. 
For comparisons with experimental data the correlation function g (?+‘, t) and the 



Use of slmllerlty hypotheses for aolvlng the problem 
of homogeneous turbulence decay 

8’29 

one-dimensional spectrum E, (k,, t), defined by 

may be necessary. b 

The definition of g and .& implies that the self-preservation f (r, t) = f (g) is 

equivalent to self-preservation g (r, t) = g (x) or El (kr, t) I bl = cp (krl). 
As regards the effect of variation of hypotheses (4.1) about the self-preservation of 

correlation functions f and h on derived results we note the following. 
1) If hypotheses (4.1) are satisfied for 0 < r / Z < x’ (x’ is any positive num- 

ber), the result is in complete agreement with that of Sedov. 

2) If hypotheses (4.1) are satisfied for X’ < r f t < X” (X’ < XR are any posi- 
tive numbers), then in the second case the variation reduces to an increase of the arbi- 

trariness of integration of the system of equations for functions f (x), h (x), b (t) and 

I (t) derived by Sedov [Z]. 
3) If weaker hypotheses about the constancy in time of parameters 

than (4.1) are satisfied, then b and ?L = lf/oc vary with time in accordance with the 

system of equations (2.7) whose solutions are defined by formulas (4.6) - (4.8). if in the 
system (2.14) the constant of integration C # 0, or by formulas (4.2) if C = 0 . 
This means that Sedov’s conclusions about the law of decay of energy and of the linear 
scale of turbulence remain valid. 

A reconsiliation of experimental data and Sedov’s solution is given below. Owing to 
the insufficiency of experimental data no comparison is made of solutions derived in 

Sects. 2 and 3 with such data, it is, however, obvious that the use of these more general 
solutions can only improve the correlation between theory and experiment. 

It is important to bear in mind that the laws of decay b (t) and E (t) for a homoge- 

neous turbulence, when the hypotheses of self-preservation of spectral tensors (2.1) are 
satisfied in the whole space (or as can be shown, when the related hypotheses of self- 

preservation of correlation tensors bi, j and St, j are satisfied at least in the neighbor- 
hood of some point r1 = r, = r3 = 0), are the same as the laws of decay b(t) and 
L? (t) derived in Sedov’s solution. 

6. The majority of expreimental data on homogeneo~ and isotropic t~bulence, 
including those cited in all references at the end of this paper, except [8, 91, relate to 
turbulent motions of air passed at constant velocity U through a grid of two mutually 
perpendicular rows of round bars of diameter d and spaced at pitch &?. 

Considerable deviations from isotropy 110, ll] and lack of tendency to isotropy build- 
up during turbulence decay were established. It was found that the ratio of mean square 
of longit~inal velocity pulsations to the mean square of transverse pulsations is greater 
than unity ((u,“) / (Use> = 1.3 f 0,2). 

In spite of these deviations from isotropy, Sedov’s solution (in the second case) with 
parameters a, = 0.2, UP /M = 0, U2 / b*= 700 and M lh* = 1.43 is in 
good agreement with the experimental data of Batchelor and Townsend [12, 131 for 
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R,\f = UM i v = 650 and &I / d = 16Jn ,as can be seen in Figs. 5 and 6. Small 
circles, crosses and black dots in Fig. 5 relate to experimental data on f (r / h) for 
x I M = Ut / M = 320, 640 and 960 , respectively. In Fig.6 black dots and cros- 
ses relate to experimental data on b (t) for n/l = 0.159 cm and 0.635 cm, respec- 
tively, and the small circles to experimental data on h (t) for M = 0.159 cm. In both 

figures and remaining ones solid lines correspond to theoretical solutions. 

When comparing experimental data with Sedov’s solution, the parameters of the latter 
were determined as follows : 

1) a was determined by comparing experimental points f (7 / J.) with the set of 

curves j (r I h; a) calculated by (4.3) and (4.5) ; 
2) h*, b* , and the adherence to the a = a, or a = a_ set was determined by 

comparing experimental points h (b) with a pair of theoretical curves (4.6) - (4.8) 

related to sets a = a, and a = a_; 
3) 1* = X* / u was determined by comparing experimental points b (t) with 

the theoretical curve (4.6) - (4. 8) 

+ [ v(t;:*) ] 

for known a = a, or a = a_. 

For the determination of all parameters of the solution it is sufficient to obtain mea- 

surements of b and h at two different times and one value of f (r / h) for r / I # 0. 
It is advisable to obtain the measured value of f in the interval 0.1 < f <‘0.6, 

because the curves of set f (r / h; a) for small f, particularly when f is close to unity, 

lie very close to each other (formula (4.5) for h implies that all curves f (7 / h) have 
at point f (0) = 1 a common third order tangency with the parabola f = 1 - $ / 2h2). 

We note that when f (r, t) and b (1) are known it is possible to determine h (r, t) 

from the K&man-Howarth equation (3.1). Hence the congruence of theoretical and 
experimental curves b (t), 1 (1) and f (r / I) ensures that the experimental function h 
satisfies the self-preservation hypothesis and is in agreement with the curve theoretically 
predicted. In other words, a deviation of the theoretical curve h (x) from the experi- 
mental h (r, t) can be only due to the inaccurate fulfillment of the Kirmdn-Howarth 
equation and, consequently, of the assumptions as to the homogeneity and isotropy of 
the averaged motion and of the actual flow obeying the Navier-Stokes system of equa- 
tions used in the derivation of that equation. 

The agreement between theoretical curves b (t), h (t) and f (r / A) and experimen- 
tal points in Figs. 5 and 6 shows that, first of all, the hypotheses of self-preservation of 

correlation functions f and h (4.1) in the experiments of Batchelor and Townsend 
[la, 131 are satisfied for RIM = 650 and, second, that the second possible alternative 
considered in Sect. 4, i. e. the Sedov solution, is realized in their experiments. 

Only one experiment carried out by Stewart [14] at R1\l = 5300 44 / d = 1G/3 
and 111 = I,27 cm in which the hypotheses (4.1) were directly verffikd was published. 

The scale 1, = A1 I/ 5 + Ut / 41 was chosen by Stewart so thnt experimental points 
I--5 of f (r / ,$) (Fig.7) and 12 (r / 11) (Fig. 8) obtained for z / ill = &‘t / ilf = 
20, 30, 60, 90 and 120 in region I” / I, < 0.1 fit a single curve. The marking of 
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pointsis the same in Figs, 7 and 8. 
Stewart, taking into consideration the experiments of Batchelor and Townsend, conclu- 

ded that self-preservation of f is violated at small r (although this is not noticeable 

on the curve f (r / Zr) in Fig. 7). The violation of self-preservation of f for small r 

makes it possible to use a wider class of solutions for the reconciliation of theory with 

experiment (see Note 2 in Sect.4). In region r / I, < 0.1 (see Note 1 in Sect.4) the 

Sedov solution with parameters 

a_ = 0.05, U2 / b* = 400, M /h* = 20, Ut* / M = -4, P = -“.071 

is, also, in fair agreement with experimental data, as seen in Figs. 7 - 9. 
Since Stewart had not published his data on b (t), the experimental points of b (t) 

shown in Fig. 9 are those obtained in [13] under similar conditions: R, = 5620, 

Ml d = 16/s, M = 0,635cm (crosses), and M = 1.27 cm (black dots). The small circles 
in Fig. 9 correspond to the scale II used in Figs. 7 and 8. In reconciling Sedov’s solution 
with experimental data h = 1i / 25 was assumed. 

With increasing Reynolds number R, the correlation between Sedov’s solution and 
experimental data on the shape of the correlation curve j (r / h) for turbulent motions 

of air downstream of a grid tends to deteriorate. Attempts by Batchelor and Townsend 

[13] to reconciliate this solution with their experimental data for R, = 11200 and 
M ! d = 1613 proved to be negative ( l ) . 

The agreement between Sedov’s solution with parameters a = 0.05, Ut* / M = 

-9, U2 / b* = 204 and M / ah = 39 and data of a recent experiment [15] at 
R,v = 17 000, M / d = 1S/3 and M = 2.54 cm (Figs. 10 and 11) in which a mo- 
tion very close to isotropic was obtained by slightly compressing the air downstream of 
the grid, A number of relationships between the component of the tensor of double cor- 

relations of velocity, which follow from the assumption of the motion isotropy, in parti- 

cular the relationship < ui’ > / < us2 > = 1 which was satisfied within 5 %. In 
Fig. 10 black dots, small circles, straight and oblique crosses relate to the measured va- 

lues of spectrum El / bh =F cp (k,h) for x I M = Ut I M = 45, 120, 240 and 385 
respectively. In Fig.11 the black dots and the small circles relate to data on b (t) and 

h it), respectively. 
Recently a number of experiments was carried out for determining the decay of tur- 

bulent motion of water downstream of various types of grids [8. S],namely: (1) grid of 
the type described at the beginning of Sect. 5 with M / d = 5; (2) grid of the same 
type but with M / d = 2.8 ; (3) grid consisting of a single row of round bars to which a 
number of plates is rigidly fixed, oscillating around its axis. The maximum velocity of 
plate ends 8, in one experiment was three times and in the other seventeen times 

higher than the stream velocity U. 

(*) These experimental data satisfy rather the hypothesis considered in Note 3 in Sect. 
4 than the hypothesis about the self-preservation of correlation functions and the ensu- 

ing laws of variation of b (t) and h (t) (4.7) (in system (2.14) C # 0). These laws, 
which are the same as Sedov’s solution are in a considerably better agreement with ex- 
perimental data than the laws (4.2) (in system (2.14) C = 0) accepted by Batchelor 
and Townsend and called by them the “initial” period of turbulence decay. 
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The main results of tests with these grids can be summarized as follows: (1) the para- 
meter (u12> / (u,~) which defines anisotropy is equal unity within 5% ; (2) the hyp- 

thesis of self-preservation of f is very well satisfied and the curve f (r I hf is universal 
for all experiments. The empirical curve proposed by the authors virtuaXly coincides 
with the curve (4.3) in the meas~ement region for 01 = 0.08. 

The values of parameters for Sedov’s solution which correlate with experimental data 

[S, 91 as well as the notation used in Figs. 12 - 14 are shown in Table 1. For all expe- 
riments it was assumed a_ = 0.08. 

Table 1 

Experimental conditions II Values of parameters Markin of 
T 1 I f experimenta noints 

Rj,g Mid I VP/U 

- 
- 

3 
17 

-- 

:cm/sec II t *. set U=;b + 
.L 

2.0 -17 
2.9 --Iii 
3.14 -3 
3.14 3 

f I M/h* in Figs. 12 214 

410 2.8 
840 5 

2000 - 
2000 - 

23.4 4.68 straight crosses 
72.4 11.5 oblique crosses 
13.2 29.5 black dots 
0.4 50 small circles 

The satisfactory corretition of experimental functions b (t), h (t)*and f fr / 11) 
with theoretical ones can be observed in Figs, 12 - 14. As in experiments with air, this 

agreement must ensure the fulfillment of the self-preservation hypothesis for the expe- 
rimental correlation function h and its conformity with the theoretical curve with the 

same degree of accuracy as the K&m&r-Howarth equation is satisfied. 
Thus, in experiments on perturbation decay in water downstream of various types of 

grids 18, 91, first, the hypotheses about the self-preservation of correlation functions f 
and h (4.1) are satisfied, second, the alternative (2) described in Sect. 4, i.e. Sedov’s 
solution, is realized, and third, the only one significant theoretical parameter a is uni- 
versal and CC_ = 0.08. Such universality does not exist in the definition of turbulent 
motions of air downstream of grids, even when these are geometrically similar. Thus in 
the experiments of Batchelor and Townsend [12, 131 a decreases from 0.2 to 0.05 when 

RM is increased from 650 to 5620 and the solution passes from the set a+ to the set 
a_. 

The qualitative divergence between experimental results with air and water is evident 

f 

i?s 

Fig. 1 Fig. 2 
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from the comparison of correlation functions f (r / h) obtained under similar conditions 
by Batchelor and Townsend in experiments with air f121 (RN = 650 and M/d = 16/3) 
and Ling and Huang with water (R M = 840 and MI d =5) [8] and which were in agree- 

ment with the theoretical curve defined by (4.3) for a = 0.2 and ct = 0.08 ,respec- 
tively,(see Figs. 1, 5 and 12). 

Thus even for geometrically similar grids a divergence from similarity which depends 

on the Reynolds number RM = UM / v is observed in experiments (‘). Hence it is 
not possible to establish universal relationships between parameters a, vt* /M2, U2 / 
6” M / h* and the number RM . 

ievertheless, as shown above, the Sedov solution derived from the I&man-Howarth 

equation with the use of only hypotheses about the self-preservation of correlation func- 
tions and without resorting to hypotheses about the vanishing of the third or higher order 
correlations of velocity or on their dependence on secondary correlations (e. g. the hypo- 

theses of Obukhov, Millionshchikov, Heisenberg, Karman and Kovazhnyi),is in good agree- 
ment with experimental data on the decay of turbulent motion of air and water downstream 
of grids. 

Finally, we note that in all cited experiments, except those of Batchelor and Townsend 

[X2, 133 at R,u = 650, parameter a < 0.1. For such a the asymptotic laws for 

t 3 00 are : b - t-l and h N t’;e and, consequently kc”& / v -+ Const +j+ 

This means that the so-called “final” period of turbulence decay, for which Al/b/v--+ 
0 when t -+ 00 and the terms of the K&m&-Howarth equations containing third mo- 

ments 
z + + b;” 

become an infinitely small of a higher order than terms containing second moments 

[ 121, does not exist in the case of experiments defined by Sedov’s solution with aC0.1. 
The author thanks L.I.Sedov for suggesting this subject and his constant interest and 

valuable discussions on this work. 
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A disperse medium consisting of an incompressible fluid and small spheres of 
equal radii suspended in the fluid is considered as the superposition of two inter- 
penetrating and interacting continua. Equations of conservation of mass, momen- 

tum and moment of momentum are obtained for the two continua in which all 
unknowns are expressed in terms of functionals of mean stresses acting at the 
surface of an individual suspended sphere. 

The mathematical definition of the motion of a disperse system - investigated in 
numerous works - requires the solution of two distinct problems. The first of these con- 
sists of the formal derivation of “macroscopic” equations for the system phases which 
are assumed to be interpenetrating continuous media with specific properties. These 

equations which reflect the laws of conservation of mass, momentum and moment of 
momentum are usually obtained by known methods of mechanics of continuous media 
(1, 21. The derivation of such equations for multiphase disperse systems of various kinds 
is treated, for instance, in [3 - 61. However the obtained equations contain knot 


